kb体育官方网站
首页 > 新闻中心

如何最大程度地降低塑料制品内应力?

2022-08-18 04:37:49 来源:KB体育电竞 作者:kb体育官网

  塑料内应力是指在塑料熔融加工过程中由于受到大分子链的取向和冷却收缩等因素作用而产生的一种内在应力。

  内应力的实质为大分子链在熔融加工过程中形成的不平衡构象,这种不平衡构象在冷却固化时不能立即恢复到与环境条件相适应的平衡构象,这种不平衡构象的实质为一种可逆的高弹形变,而冻结的高弹形变平时以位能形式贮存在塑料制品中,在适宜的条件下,这种被迫的不稳定的构象将向自由的稳定的构象转化,位能转变为动能而释放。

  当大分子链间的作用力和相互缠结力承受不住这种动能时,内应力平衡即遭到破坏,塑料制品就会产生应力开裂及翘曲变形等现象。

  几乎所有塑料制品都会不同程度地存在内应力,尤其是塑料注射制品的内应力更为明显。内应力的存在不仅使塑料制品在贮存和使用过程中出现翘曲变形和开裂,也影响塑料制品的力学性能、光学性能、电学性能及外观质量。

  为此,必须从原料配方、成型加工条件、塑料制品结构和模具设计等方面找出消除内应力的办法,最大程度地降低塑料制品内部的应力,并使残余内应力在塑料制品上尽可能均匀地分布,避免产生应力集中现象,从而改善塑料制品的性能。

  聚合物分子量越大,大分子链间作用力和缠结程度增加,其制品抗应力开裂能力较强;聚合物分子量分布越宽,其中低分子量成分越大,容易首先形成微观撕裂,造成应力集中,便制品开裂。

  树脂内的杂质即是应力的集中体,又会降低塑料的原有强度,应将杂质含量减少到最低程度。

  将易出现应力开裂的树脂与适宜的其它树脂共混,可降低内应力的存在程度。例如,在PC中混入适量PS,PS呈近似珠粒状分散于PC连续相中,可使内应力沿球面分散缓解并阻止裂纹扩展,从而达到降低内应力的目的。再如,在PC中混入适量PE,PE球粒外沿可形成封闭的空化区,也可适当降低内应力。

  用增强纤维进行增强改性,可以降品的内应力,这是因为纤维缠结了很多大分子链,从而提高应力开裂能力。例如,30%GF增强PC的耐应力开裂能力比纯PC提高6倍之多。

  在结晶性塑料中加入适宜的成核剂,可以在其制品中形成许多小的球晶,使内应力降低并得到分散。

  在塑料制品的成型过程中,凡是能减小制品中聚合物分子取向的成型因素都能够降低取向应力;凡是能使制品中聚合物均匀冷却的工艺条件都能降低冷却内应力;凡有助于塑料制品脱模的加工方法都有利于降低脱模内应力。

  较高的料筒温度有利于取向应力的降低,这是因为在较高的料筒温度下,熔体塑化均匀,粘度下降,流动性增加,在熔体充满型腔过程中,分子取向作用小,因而取向应力较小。而在较低料筒温度下,熔体粘度较高,充模过程中分子取向较多,冷却定型后残余内应力则较大。

  但是,料筒温度太高也不好,太高容易造成冷却不充分,脱模时易造成变形,虽然取向应力减小,但冷却应力和脱模应力反而增大。

  模具温度的高低对取向内应力和冷却内应力的影响都很大。一方面,模具温度过低,会造成冷却加快,易使冷却不均匀而引起收缩上的较大差异,从而增大冷却内应力;另一方面,模具温度过低,熔体进入模其后,温度下降加快,熔体粘度增加迅速,造成在高粘度下充模,形成取向应力的程度明显加大。

  模温对塑料结晶影响很大,模温越高,越有利于晶粒堆砌紧密,晶体内部的缺陷减小或消除,从而减少内应力。

  另外,对于不同厚度塑料制品,其模温要求不同。对于厚壁制品其模温要适当高一些。

  注射压力高,熔体充模过程中所受剪切作用力大,产生取向应力的机会也较大。因此,为了降低取向应力和消除脱模应力,应适当降低注射压力。.

  保压压力对塑料制品内应力的影响大于注射压力的影响。在保压阶段,随着熔体温度的降低,熔体粘度迅速增加,此时若施以高压,必然导致分子链的强迫取向,从而形成更大的取向应力。

  注射速度越快,越容易造成分子链的取向程度增加,从而引起更大的取向应力。但注射速度过低,塑料熔体进入模腔后,可能先后分层而形成熔化痕,产生应力集中线,易产生应力开裂。所以注射速度以适中为宜。最好采用变速注射,在速度逐渐减小下结束充模。

  保压时间越长,会增大塑料熔体的剪切作用,从而产生更大的弹性形变,冻结更多的取向应力。所以,取向应力随保压时间延长和补料量增加而显著增大。

  应适当调整注射压力和保压时间,使开模时模内的残余压力接近于大气压力,从而避免产生更大的脱模内应力。

  在具体设计塑料制品时,为了有效地分散内应力,应遵循这样的原则:制品外形应尽可能保持连续性,避免锐角、直角、缺口及突然扩大或缩小。

  对于塑料制品的边缘处应设计成圆角,其中内圆角半径应大于相邻两壁中薄者厚度的70%以上;外圆角半径则根据制品形状而确定。

  对于壁厚相差较大的部位,因冷却速度不同,易产生冷却内应力及取向内应力。因此,应设计成壁厚尽可能均匀的制件,如必须壁厚不均匀,则要进行壁厚差异的渐变过渡。

  塑料与金属的热膨胀系数相差5~10倍,因而带金属嵌件的塑料制品在冷却时,两者形成的收缩程度不同,因塑料的收缩比较大而紧紧抱住金属嵌件,在嵌件周围的塑料内层受压应力,而外层受拉应力作用,产生应力集中现象。

  b.尽可能选择与塑料热膨胀系数相差小的金属材料做嵌件材料,如铝、铝合金及铜等;

  c.在金属嵌件上涂覆一层橡胶或聚氨酯弹性缓冲层,并保证成型时涂覆层不熔化,可降低两者收缩差;

  f.金属嵌件周围塑料的厚度要充足,例如,嵌件外径为D,嵌件周围塑料厚度为h,则对铝嵌件塑料厚度h≥0.8D;对于铜嵌件,塑料厚度h≥0.9D;

  为避免应力开裂,切忌在塑料制品上开设棱形、矩形、方形或多边形孔。应尽可能开设圆形孔,其中椭圆形孔的效果最好,并应使椭圆形孔的长轴平行于外力作用方向。如开设圆孔,可增开等直径的工艺圆孔,并使相邻两圆孔的中心连接线平行于外力作用方向,这样可以取得与椭圆孔相似的效果;还有一种方法,即在圆孔周围开设对称的槽孔,以分散内应力。

  在设计塑料模具时,浇注系统和冷却系统对塑料制品的内应力影响较大,在具体设计时应注意如下几点。

  过大的浇口将需要较长的保压补料时间,在降温过程中的补料流动必定会冻结更多的取向应力,尤其是在补填冷料时,将给浇口附近造成很大的内应力。

  适当缩小浇口尺寸,可缩短保压补料时间,降低浇口凝封时模内压力,从而降低取向应力。但过小的浇口将导致充模时间延长,造成制品缺料。

  浇口的位置决定塑料熔体在模腔内的流动情况、流动距离和流动方向。当浇口设在制品壁厚最大部位时,可适当降低注射压力、保压压力及保压时间,有利于降低取向应力。当浇口设在薄壁部位时,宜适当增加浇口处的壁厚,以降低浇口附近的取向应力。

  熔体在模腔内流动距离越长,产生取向应力的几率越大。为此,对于壁厚、长流程且面积较大的塑料件,应适当分布多个浇口,能有效地降低取向应力,防止翘曲变形。

  另外,由于浇口附近为内.应力多发地带,可在浇口附近设计成护耳式浇口,使内应力产生在护耳中,脱模后切除内应力较大的护耳,可降低塑料制品内的内应力。

  设计短而粗的流道,可减小熔体的压力损失和温度降,相应降低注射压力和冷却速度,从而降低取向应力和冷却压力。

  冷却水道的分布要合理,使浇口附近、远离浇口区、壁厚处、壁薄处都得到均匀且缓慢的冷却,从而降低内应力。

  要设计适当的脱模锥度、较高的型芯光洁度和较大面积的顶出部位,以防止强行脱模产生脱模应力。